Efficient tin hydride-mediated radical cyclisation of secondary amides leading to substituted pyrrolidinones. Part 2. Application to the synthesis of aromatic kainic acid analogues

Justin S. Bryans, ${ }^{a}$ Jonathan M. Large ${ }^{b}$ and Andrew F. Parsons * ${ }^{b}$
${ }^{a}$ Parke-Davis Neuroscience Research Centre, Cambridge University Forvie Site, Robinson Way, Cambridge, UK CB2 2QB
${ }^{b}$ Department of Chemistry, University of York, Heslington, York, UK YO10 5DD

Received (in Cambridge, UK) 19th July 1999, Accepted 31st August 1999

An enantioselective synthesis of phenyl allokainoid, starting from D-serine, is reported. Tin-mediated cyclisation of a secondary amide was used in the key step to produce a trisubstituted pyrrolidinone in excellent yield (ca. 80%). The predominant formation of the all-trans diastereoisomer is consistent with a reversible cyclisation to give the thermodynamically more stable product.

Introduction

Substituted pyrrolidines and pyrrolidinones are attractive synthetic targets because of their widespread occurrence and diverse range of important biological activities. One important family of naturally occurring pyrrolidines are the kainoid amino acids which possess anthelmintic, insecticidal and most importantly, neuroexcitatory properties. ${ }^{1}$ This is attributed to their action as conformationally restricted analogues of the neurotransmitter l-glutamic acid. Numerous syntheses of the parent member, kainic acid 1, and the C-4 epimer, allokainic

acid 2, have been reported ${ }^{1}$ and interest has now turned towards the preparation of (C-4) aromatic analogues $3 .{ }^{2}$ These aromatic amino acids have been shown to exhibit the most potent neuroexcitatory activity of this family of compounds.
Our earlier work had shown that trisubstituted pyrrolidinones could be isolated in good yield from radical cyclisation of secondary haloamides. ${ }^{3}$ We envisaged that this type of cyclisation could be employed to construct the 5 -membered ring present in the kainoid amino acids. As shown in the retrosynthetic analysis (Scheme 1), reaction of a halide precursor of type $\mathbf{4}$ with tributyltin hydride could allow the preparation of pyrrolidinone 5. Steric interactions were expected to give predominantly the trans-C-4-C-5 isomer. Elaboration to the amino acid would then include oxidation of the primary alcohol and reduction of the lactam carbonyl. An aromatic substituent $(\mathrm{R}=\mathrm{Ph})$ at the site of radical generation was of particular interest as this is required for the preparation of biologically important aromatic analogues 3 . The chiral cyclisation

Scheme 1
precursor 4, required for an enantioselective synthesis of $\mathbf{3}$, could be prepared from the amino acid D-serine.

To test the feasibility of this approach, the preparation of benzylic chloride 6, containing a silyl protected alcohol, was then carried out starting from DL-serine (Scheme 2). Reaction

Scheme 2
of the TBDPS derivative 6 with tin hydride in boiling toluene yielded three separable pyrrolidinones $7-9$ in a combined yield of 84% after column chromatography. Simple reduction, to give
ethanamide $\mathbf{1 0}$, was only observed in low yield (8\%). A similar result was obtained using the corresponding TBDMS-protected alcohol to give the related pyrrolidinones (as an 8.6:4.5:1 mixture of isomers) in a combined 85% yield.

The formation of three pyrrolidinone diastereomers, 7-9, in the ratio 8.9:3.5:1 can be compared to the cyclisation of a similar N-benzyl precursor $\mathbf{1 1}$ which gave a $1: 1: 1$ mixture of

11

13a; $\mathrm{P}=\mathrm{H}(\mathrm{d} . \mathrm{r} ., 8.5: 1)$
13b; $\mathrm{P}=\mathrm{Me}($ d.r. $, 5.5: 1)$
13c; $P=B n(d . r ., 4.1: 1)$

12a; $\mathrm{P}=\mathrm{H}$
12b; $\mathrm{P}=\mathrm{Me}$
12c; $\mathrm{P}=\mathrm{Bn}$

14; $\mathrm{R}=\mathrm{H}$
15; $\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}$
pyrrolidinone isomers. ${ }^{4}$ This marked change in diastereoselectivity can be explained by steric effects-the size of the nitrogen protecting group could influence the reversibility of the radical cyclisation process. A bulky benzyl substituent on nitrogen could lower the rate of ring opening of the pyrrolidinone radical leading to less of the trans-pyrrolidinone isomer. In order to investigate this, the N-methyl and N-benzyl precursors, 12b and 12c were prepared by acylation of the corresponding secondary amines. These were reacted with $\mathrm{Bu}_{3} \mathrm{SnH}$ and the ratio of diastereomers for pyrrolidinones 13b and $\mathbf{1 3 c}$ was compared to that obtained from cyclisation of the corresponding secondary amide 12a. ${ }^{3}$ The presence of an N-Me substituent was shown to lower the diastereoselectivity from 8.5:1 (for 13a) to 5.5:1 for $\mathbf{1 3 b}$ and this was lowered further (to $4.1: 1$) using the N-benzyl precursor 13c. These results clearly show that the size of the N-protecting group influences the diastereoselectivity of the cyclisation; the smaller the group the greater the proportion of the trans-isomer. This is consistent with a faster rate of ring opening for a pyrrolidinone methyl radical with no nitrogen protecting group. Reaction of the N-Me precursor 12b with tin hydride added in one portion (rather than over 1 h) was shown, as expected, to lead to more simple reduction. However, pyrrolidinone 13b was formed and analysis of the crude ${ }^{1} \mathrm{H}$ NMR spectrum showed the diastereomer ratio was $3: 1$, rather than $5.5: 1$, observed when the tin hydride was added over 1 h . This is further evidence for a reversible cyclisation reaction; in the presence of a high concentration of tin hydride the rate of trapping of the pyrrolidinone methyl radical will be increased leading to less ring opening and consequently more of the cis-isomer of 13b.

The introduction of substituents in a carbocyclic chain has also been shown to increase the rate of 5-exo radical cyclisation onto a double bond. Substrates bearing geminal dimethyl or diester substituents, for example, have been shown to cyclise very rapidly. ${ }^{5,6}$ For the (reversible) cyclisation of benzylic radicals, these substituents have also been shown to influence the cyclopentane diastereoselectivity; whereas the 1-phenylhex-5-enylradical $\mathbf{1 4}$ gave only the trans-cyclopentane, ${ }^{7}$ the related diester precursor $\mathbf{1 5}$ (in which the benzylic radical was generated by a 1,5 -hydrogen atom transfer) afforded the cyclopentane as a 47:53 mixture of cis:trans isomers. ${ }^{6}$ As for the pyrrolidinone system, it appears that the rate of ring opening is influenced by substitution within the chain - the introduction
of large substituents slows the radical ring opening reaction leading to more of the $c i s$-isomer. \dagger

The successful formation of trisubstituted pyrrolidinones, bearing a protected alcohol side chain, suggested that this cyclisation method could be applied to the synthesis of kainoid amino acids. This was investigated using D-serine methyl ester hydrochloride 16 which was initially N-protected and converted to the α, β-unsaturated ester $\mathbf{1 7}$ via Wittig reaction of the intermediate α-amino aldehyde (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectrum

Scheme 3 Reagents and conditions: (i) (Boc$)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(85 \%)$; (ii) TBDPSCl, DMAP (cat.), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(87 \%)$; (iii) DIBAL-H, toluene, $-78{ }^{\circ} \mathrm{C}$; (iv) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(74 \%$ over two steps); (v) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to room temp.; (vi) $\mathrm{PhCH}(\mathrm{Cl}) \mathrm{COCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Et}_{2} \mathrm{O}$, $0{ }^{\circ} \mathrm{C}$ to room temp. (81% over two steps); (vii) $\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, toluene, heat (79%; dr 8.9:3.5:1).
showed the exclusive formation of the trans-double bond iso$\operatorname{mer}(J=16 \mathrm{~Hz})$. In order to investigate if any racemisation of the α-centre had taken place during these reactions, the silyl ether $\mathbf{1 8}$ was deprotected using TBAF and the resultant alcohol reacted with either $(+)$ - or (\pm)-MTPA [α-methoxy- α-(trifluoromethyl)phenyl] chloride at $0^{\circ} \mathrm{C}$ in the presence of DMAP. Analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{19} \mathrm{~F}$ NMR spectra of the crude esters indicated an ee of $\geq 95 \%$. For example, two peaks (of approximately the same ratio) were observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum at -69.50 and -70.75 ppm for the ester derived from (\pm)MTPA chloride while only one of these (at -70.75 ppm) was present in the spectrum of the ester prepared from (+)-MTPA chloride. $\ddagger N$-Deprotection of $\mathbf{1 7}$ using TFA followed by acylation of the crude primary amine afforded chloroamide $\mathbf{1 8}$ in excellent yield. Treatment of $\mathbf{1 8}$ with tin hydride, added over 1 h , gave the trisubstituted pyrrolidinone 19 in similar yield and diastereoselectivity to that observed earlier (in the racemic studies). The cyclisation reaction was carried out a number of times using $0.2-1.8 \mathrm{mmol}$ of $\mathbf{1 8}$ and in some cases the product of simple reduction was observed but only in $\leq 8 \%$ yield. The stereochemistry of the three pyrrolidinone diastereomers was deduced from comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra with that of related compounds ${ }^{4}$ and confirmed by base-induced epimerisation experiments. For example, the cis-C-3-C-4 isomer [of type 8] could be isomerised (in 75% yield) to the more stable all trans-diastereomer 20 (Scheme 4) on heating with DBU in toluene.
The trans-pyrrolidinone $\mathbf{2 0}$ was then converted to the N-Boc derivative so as to facilitate lactam reduction. Under the basic conditions used for the N-protection, epimerisation occurred to
\dagger This is well documented for ring opening of cyclobutylmethyl radicals. The cyclobutylmethyl radical ring opens 1.6 times faster than the 3,3-dimethylcyclobutylmethyl radical at $60^{\circ} \mathrm{C} .{ }^{8}$
\ddagger The ${ }^{19} \mathrm{~F}$ NMR spectra were referenced to residual (\pm)-MTPA chloride at -70.45 ppm .

20

21
$+$
2-3: 1

22

25
(v)-(viii)

24

23

Scheme 4 Reagents and conditions: (i) (Boc$)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$ (2 equiv.), DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, (75%); (ii) $\mathrm{BH}_{3} \cdot$ DMS (6 equiv.), THF, heat (75%); (iii) $\mathrm{BH}_{3} \cdot$ DMS (2 equiv.), THF, heat (49%); (iv) TBAF, THF (50%); (v) TBAF, THF (90%); (vi) $\mathrm{RuCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{NaIO}_{4}, \mathrm{MeCN}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CCl}_{4}$; (vii) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}\left(44 \%\right.$ over two steps); (viii) $\mathrm{HCl}_{2}, \mathrm{H}_{2} \mathrm{O}, 70^{\circ} \mathrm{C}(93 \%)$.
give a mixture of the C-4 epimers 21 and 22. It is of interest to note that whereas isomerisation of the cis-C-3-C-4 NH isomer [of type 8] to 20 occurred readily on heating with DBU, the corresponding N-Boc compound 22 was more resistant and a mixture of $\mathbf{2 1}$ and 22 (in the ratio $1: 1$) was isolated under the same conditions. Presumably epimerisation of 21 occurs after N-protection and this phenomenon has previously been observed for alkylated N-Boc pyroglutamates. ${ }^{9}$ Reduction of lactam 22 using two equivalents of borane-dimethyl sulfide complex gave the pyrrolidine in moderate yield and subsequent desilylation to alcohol $\mathbf{2 3}$ was achieved in a similar yield. The deprotection of related compounds, with alternative protecting groups, has previously been reported as a route to phenylkainic acid. ${ }^{1,2}$ A much cleaner transformation was observed when 21 was reacted with six equivalents of borane-dimethyl sulfide complex to promote both lactam and ester reduction. The product alcohol 24 was then desilylated and oxidised to the dicarboxylic acid. For ease of characterisation, this was reacted with diazomethane and the dimethyl ester was isolated in reasonable yield. This could be efficiently deprotected using hot aqueous HCl to afford the amino acid salt $\mathbf{2 5}$ in 13 steps (4.5% overall yield) from serine methyl ester 16. The spectroscopic data for $\mathbf{2 5}$ was consistent with that reported previously for related compounds. ${ }^{2 b}$

This work has shown that secondary haloamides bearing a protected alcohol side chain can produce trisubstituted pyrrolidinones in excellent yield. Elaboration of the cyclised product has demonstrated a novel approach to an aromatic allokainoid amino acid.

Experimental

For general experimental and a procedure for radical cyclisation see the preceding paper. ${ }^{3}$

Radical cyclisation of alkene 6

Following the general radical cyclisation procedure, the alkene $6(155 \mathrm{mg}, 0.21 \mathrm{mmol})$ (prepared in the same manner as the enantiomerically pure alkene $\mathbf{1 8}$) in degassed toluene $\left(9 \mathrm{~cm}^{3}\right)$ was treated with tributyltin hydride ($67 \mathrm{mg}, 0.23 \mathrm{mmol}$) and azobisisobutyronitrile ($7 \mathrm{mg}, 0.04 \mathrm{mmol}$) in toluene $\left(17 \mathrm{~cm}^{3}\right)$ over a 1 h addition period, and the reaction mixture stirred at reflux for a further 18 h . Column chromatography (dichloro-methane-ethyl acetate, $4: 1$) afforded the 3-phenyl-4-(ethoxy-carbonylmethyl)-5-(tert-butyldiphenylsilyloxymethyl)pyrro-
lidin-2-ones $7, \mathbf{8}$ and $\mathbf{9}(90 \mathrm{mg}, 84 \%)$ as colourless oils in a ratio of $8.9: 3.5: 1$, together with reduced product $\mathbf{1 0}(4 \mathrm{mg}, 4 \%)$ as a colourless oil.
($3 R^{*}, 4 S^{*}, 5 S^{*}$) Major diastereoisomer 7: $R_{\mathrm{f}} 0.3$ (dichloro-methane-ethyl acetate, $4: 1$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3429(\mathrm{w}), 3008$ (w), 2931 (w), 2862 (w), 1705 (s), 1427 (w), 1111 (w), 706 (w); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.60-7.51(4 \mathrm{H}, \mathrm{m}$, aromatics), $7.39-7.08$ $(11 \mathrm{H}, \mathrm{m}$, aromatics), $6.21(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 3.85-3.66(3 \mathrm{H}, \mathrm{m}$, $\mathrm{CO}_{2} \mathrm{CH}_{2}$, NHCH $), 3.59-3.50\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}\right), 3.39(1 \mathrm{H}, \mathrm{d}$, $J=10, \mathrm{PhCH}), 2.45\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 2.37(2 \mathrm{H}, \mathrm{d}, J=7$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 1.00\left(9 \mathrm{H}, \mathrm{s}, \quad \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 0.98(3 \mathrm{H}, \mathrm{t}, \quad J=7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 177.4,171.4(\mathrm{CONH}$, $\left.\mathrm{CO}_{2} \mathrm{Et}\right), 138.0(\mathrm{C}=\mathrm{CH}), 136.0(\mathrm{CH}=\mathrm{C})$, $133.2(\mathrm{C}=\mathrm{CH})$, 130.4, 129.9, 128.9, 128.3, $127.9(\mathrm{CH}=\mathrm{C}), 66.4\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 61.1\left(\mathrm{CO}_{2}{ }^{-}\right.$ $\left.\mathrm{CH}_{2}\right), 59.8(\mathrm{PhCH}), 54.8(\mathrm{NHCH}), 43.1\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 37.3$ $\left.\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 27.3\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 19.6(\mathrm{SiCMe})_{3}\right), 14.4\left(\mathrm{CO}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 516\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 458$ (28) (Found: $\mathrm{M}+\mathrm{H}^{+}, 516.2563 . \mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}$ requires for $\mathrm{M}+\mathrm{H}^{+}$, 516.2570).
$\left(3 R^{*}, 4 R^{*}, 5 R^{*}\right)$ Minor diastereoisomer 8: $R_{\mathrm{f}} 0.4$ (dichloro-methane-ethyl acetate, $4: 1$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3429(\mathrm{w}), 2958$ (w), 2862 (w), 1705 (s), 1600 (w), 1427 (w), 1111 (w), 779 (w); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.60-7.55(4 \mathrm{H}, \mathrm{m}$, aromatics), $7.39-7.16$ ($9 \mathrm{H}, \mathrm{m}$, aromatics), 7.05-7.02 $(2 \mathrm{H}, \mathrm{m}$, aromatics), $6.11(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{N} H), 3.91-3.83\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}, \mathrm{PhCH}\right), 3.70(1 \mathrm{H}$, dd, $\left.J=10,5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.59\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right), 3.46(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NHCH}), 2.85\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 2.01(1 \mathrm{H}, \mathrm{dd}, J=16.5,7.5$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}_{2}\right), 1.81\left(1 \mathrm{H}, \mathrm{dd}, J=17,8, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CO}_{2}\right), 1.04(3 \mathrm{H}, \mathrm{t}$, $\left.J=7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.95\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 177.0,171.6\left(\mathrm{CONH}, \mathrm{CO}_{2} \mathrm{Et}\right), 135.5(\mathrm{CH}=\mathrm{C}), 135.1$, $132.7(C=\mathrm{CH}), 130.2,129.3,128.8,127.9,127.5(\mathrm{CH}=\mathrm{C})$, $66.4\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 60.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 59.5(\mathrm{PhCH}), 51.1(\mathrm{NHCH})$, $37.9\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 34.6\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 26.8\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.2$ $(\mathrm{SiCMe}), 14.0\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 516\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 100%), 458 (11) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 516.2560. $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}$ requires for $\mathrm{M}+\mathrm{H}^{+}, 516.2570$).
($3 R^{*}, 4 S^{*}, 5 R^{*}$) Minor diastereoisomer 9: the presence of this was indicated by NMR spectroscopy; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.61-7.50(4 \mathrm{H}, \mathrm{m}$, aromatics), $7.39-7.21(11 \mathrm{H}, \mathrm{m}$, aromatics $)$, 3.97-3.79 (4H, m, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2}, \mathrm{NHCH}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.66(1 \mathrm{H}$, app. d, $\left.J=5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right), 3.63(1 \mathrm{H}, \mathrm{d}, J=10, \mathrm{PhCH}), 2.93$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH} \mathrm{CO}_{2}\right), 2.67\left(1 \mathrm{H}, \mathrm{dd}, J=17,10.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}_{2}\right)$, $2.48\left(1 \mathrm{H}, \mathrm{dd}, J=17,5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CO}_{2}\right), 1.06(3 \mathrm{H}, \mathrm{t}, ~ J=7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.00\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

Phenylethanamide 10: $R_{\mathrm{f}} 0.7$ (dichloromethane-ethyl acetate, $4: 1) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.43-7.21(15 \mathrm{H}, \mathrm{m}$, aromatics $), 6.75$ (1 H , dd, $\left.J=16,16,5, \mathrm{C} H=\mathrm{CHCO}_{2}\right), 5.90(1 \mathrm{H}, \mathrm{d}, J=8, \mathrm{~N} H)$, $5.73\left(1 \mathrm{H}, \mathrm{dd}, J=16,2, \mathrm{CH}=\mathrm{CHCO}_{2}\right), 4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH})$, $4.13\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 3.64-3.54\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}\right), 3.63$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{PhCH}), 1.21\left(3 \mathrm{H}, \mathrm{t}, J=7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.03(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

1,4-Dimethyl-3-phenylpyrrolidin-2-one 13b. $\left(3 R^{*}, 4 S^{*}\right)$ Major diastereoisomer: Oil; $39 \% ; R_{\mathrm{f}} 0.3$ (ethyl acetate); $v_{\max } / \mathrm{cm}^{-1}$ $\left(\mathrm{CHCl}_{3}\right) 3003$ (m), 2929 (m), 2873 (m), 1689 (s), 1496 (s), 1454 (s), 1405 (s), 1267 (s), 1240 (m), 1151 (w), 698 (m); δ_{H} (270 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.36-7.15(5 \mathrm{H}, \mathrm{m}$, aromatics), $3.51(1 \mathrm{H}$, dd, $\left.J=10,8, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.16(1 \mathrm{H}, \mathrm{d}, J=10, \mathrm{PhCH}), 3.04(1 \mathrm{H}$, app. $\left.\mathrm{t}, J=9.5, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 2.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.38(1 \mathrm{H}, \mathrm{m}$,
$\left.\mathrm{CHCH}_{3}\right), 1.15\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=7, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $174.7(\mathrm{NCO}), 138.7(\mathrm{C}=\mathrm{CH}), 128.5,128.3,126.9(\mathrm{CH}=\mathrm{C}), 56.6$ $(\mathrm{PhCH}), 54.8\left(\mathrm{NCH}_{2}\right), 37.2\left(\mathrm{CHCH}_{3}\right), 29.9\left(\mathrm{NCH}_{3}\right), 17.4$ $\left(\mathrm{CHCH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 190\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right.$) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 190.1228. $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}$ requires for $\mathrm{M}+\mathrm{H}^{+}$, 190.1232).
($3 R^{*}, 4 R^{*}$) Minor diastereoisomer: the presence of this was indicated by NMR spectroscopy; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 3.75$ $(1 \mathrm{H}, \mathrm{d}, ~ J=8.5, \mathrm{PhCH}), 2.97\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.74(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{3}\right), 0.68\left(3 \mathrm{H}, \mathrm{d}, J=7.5, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $175.0(\mathrm{NCO}), 136.1(\mathrm{C}=\mathrm{CH}), 129.1,128.3,126.7(\mathrm{CH}=\mathrm{C}), 55.1$ $\left(\mathrm{NCH}_{2}\right), 52.7(\mathrm{PhCH}), 31.8\left(\mathrm{CHCH}_{3}\right), 29.7\left(\mathrm{NCH}_{3}\right), 15.2$ $\left(\mathrm{CHCH}_{3}\right)$.

1-Benzyl-4-methyl-3-phenylpyrrolidin-2-one 13c. $\left(3 R^{*}, 4 S^{*}\right)$ Major diastereoisomer: Oil; $57 \% ; R_{\mathrm{f}} 0.4$ (petroleum ether-ethyl acetate, $1: 1$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3064(\mathrm{~m}), 3001(\mathrm{~s}), 2873(\mathrm{~m})$, 1675 (s), 1492 (s), 1442 (s), 1358 (w), 1259 (s), 908 (m), 771 (m), 754 (s), 721 (s), 700 (s); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.39-7.18(10 \mathrm{H}$, m , aromatics), $4.60\left(1 \mathrm{H}, \mathrm{d}, J=14.5, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.11(1 \mathrm{H}, \mathrm{d}$, $\left.J=14.5, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 3.39\left(1 \mathrm{H}, \mathrm{dd}, J=10,8, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}\right)$, $3.22(1 \mathrm{H}, \mathrm{d}, J=9.5, \mathrm{PhC} H), 2.90(1 \mathrm{H}, \mathrm{dd}, J=9.5,8.5$, $\left.\mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}\right), 2.36\left(1 \mathrm{H}\right.$, septet of $\left.\mathrm{t}, \mathrm{J}=8,1.5, \mathrm{CHCH}_{3}\right), 1.09$ $\left(3 \mathrm{H}, \mathrm{d}, J=7, \mathrm{CHCH}_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.5(\mathrm{NCO})$, 138.6, $136.5(\mathrm{C}=\mathrm{CH}), 128.6,128.4,128.1,127.5,127.0,126.8$ $(\mathrm{CH}=\mathrm{C}), 56.8(\mathrm{PhCH}), 51.9,46.8\left(\mathrm{NCH}_{2} \mathrm{Ph}, \mathrm{NCH}_{2} \mathrm{CH}\right), 37.1$ $\left(\mathrm{CHCH}_{3}\right), 17.4\left(\mathrm{CHCH}_{3}\right) ; ~ m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 266\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$, 91 (10) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 266.1542. $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires for $\left.\mathrm{M}+\mathrm{H}^{+}, 266.1545\right)$.
($3 R^{*}, 4 R^{*}$) Minor diastereoisomer: Oil; $R_{\mathrm{f}} 0.3$ (petroleum ether-ethyl acetate, $1: 1$); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3016(\mathrm{~m}), 2873(\mathrm{w})$, 1676 (s), 1602 (w), 1494 (w), 1433 (w), 1263 (w); $\delta_{\mathrm{H}}(270 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 7.37-7.03(10 \mathrm{H}, \mathrm{m}$, aromatics $), 4.65(1 \mathrm{H}, \mathrm{d}, J=14.5$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{Ph}\right), 4.50\left(1 \mathrm{H}, \mathrm{d}, J=14.5, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{Ph}\right), 3.80(1 \mathrm{H}, \mathrm{d}$, $J=9, \mathrm{PhC} H), 3.40\left(1 \mathrm{H}, \mathrm{dd}, J=10,8.5, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CH}\right), 2.93$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9,6, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CH}\right), 2.70\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{3}\right), 0.64$ ($3 \mathrm{H}, \mathrm{d}, J=7, \mathrm{CHCH}_{3}$); $\delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.7(\mathrm{NCO})$, 136.6, $136.3(\mathrm{C}=\mathrm{CH}), 129.2,128.7,128.2,127.7,127.5,127.0$ $(\mathrm{CH}=\mathrm{C}), 53.0(\mathrm{PhCH}), 52.3,46.8\left(\mathrm{NCH}_{2} \mathrm{Ph}, \mathrm{NCH}_{2} \mathrm{CH}\right), 32.0$ $\left(\mathrm{CHCH}_{3}\right), 15.2\left(\mathrm{CHCH}_{3}\right) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 266\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right)$, 176 (5), 91 (11) (Found: $\mathrm{M}+\mathrm{H}^{+}, 266.1541 . \mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$ requires for $\left.\mathrm{M}+\mathrm{H}^{+}, 266.1545\right)$.

(4S)-Ethyl (E)-4-(tert-butoxycarbonylamino)-5-(tert-butyl-diphenylsilyloxy)pent-2-enoate 17

A solution of (3S)-methyl 2-(tert-butoxycarbonylamino)-3-(tert-butyldiphenylsilyloxy)propanoate ${ }^{10}(265 \mathrm{mg}, 0.58 \mathrm{mmol})$ in toluene ($5 \mathrm{~cm}^{3}$) at $-78^{\circ} \mathrm{C}$ was treated with diisobutylaluminium hydride ($1.45 \mathrm{~cm}^{3}, 1.45 \mathrm{mmol}, 1 \mathrm{M}$ in toluene), via a syringe pump over 1 h . After stirring for $1 \mathrm{~h}, 10 \%$ aqueous citric acid $\left(25 \mathrm{~cm}^{3}\right)$ and ethyl acetate $\left(25 \mathrm{~cm}^{3}\right)$ were added and the mixture stirred for 1 h . The organic layer was separated and washed with brine, dried (magnesium sulfate) and concentrated in vacuo to afford the crude aldehyde (195 mg) as an oil; $R_{\mathrm{f}} 0.55$ (petroleum ether-ethyl acetate, 2:1); $\delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 9.59(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.64-7.50(4 \mathrm{H}, \mathrm{m}$, aromatics $)$, $7.42-7.27(6 \mathrm{H}, \mathrm{m}$, aromatics), $5.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{N} H), 4.22(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NHC} H), 4.05\left(1 \mathrm{H}, \mathrm{dd}, J=10,3, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.92(1 \mathrm{H}, \mathrm{dd}$, $\left.J=10,3, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right), 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.96(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$.

The aldehyde was then treated with ethoxycarbonylmethylenetriphenylphosphorane ($300 \mathrm{mg}, 0.87 \mathrm{mmol}$) in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$. The organic layer was separated and washed with brine, dried (magnesium sulfate) and concentrated in vacuo. Column chromatography (petroleum ether-ethyl acetate, 5:1) afforded the alkene $\mathbf{1 7}$ ($214 \mathrm{mg}, 74 \%$ over two steps) as a colourless oil; $R_{\mathrm{f}} 0.35$ (petroleum ether-ethyl acetate, $5: 1$); $[a]_{\mathrm{D}}^{20}-14.8(c 0.52$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3381$ (w), 2940 (w), 1705 (s), 1512 $(\mathrm{m}), 733(\mathrm{w}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.68-7.57(4 \mathrm{H}, \mathrm{m}$, aromatics), $7.48-7.32(6 \mathrm{H}, \mathrm{m}$, aromatics $), 6.91(1 \mathrm{H}, \mathrm{dd}, J=16,6$,
$\left.\mathrm{C} H=\mathrm{CHCO}_{2}\right), 5.96\left(1 \mathrm{H}, \mathrm{dd}, J=16,2, \mathrm{CH}=\mathrm{C} H \mathrm{CO}_{2}\right), 4.89(1 \mathrm{H}$, br s, $\mathrm{N} H), 4.41(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 4.20\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{CO}_{2} \mathrm{CH}_{2}\right)$, $3.78\left(1 \mathrm{H}, \mathrm{dd}, J=10,4.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.69(1 \mathrm{H}, \mathrm{dd}, J=10,4.5$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{OSi}\right), 1.45\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.29(3 \mathrm{H}, \mathrm{t}, J=7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $166.0\left(\mathrm{CO}_{2} \mathrm{Et}\right), 155.1(\mathrm{NHCO}), 146.2\left(\mathrm{CH}=\mathrm{CHCO}_{2}\right), 135.5$ $(\mathrm{CH}=\mathrm{C}), 132.9,137.7(\mathrm{C}=\mathrm{CH}), 129.9$, $127.7(\mathrm{CH}=\mathrm{C}), 122.0$ $\left(\mathrm{CH}=\mathrm{CHCO}_{2}\right), 79.8 \quad\left(\mathrm{NHCO}_{2} \mathrm{CMe}_{3}\right), 65.4\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 60.4$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 53.1(\mathrm{NHCH}), 28.3\left(\mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 26.8,26.5$ $\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.2\left(\mathrm{SiCMe}_{3}\right), 14.2\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ $498\left(\mathrm{M}+\mathrm{H}^{+}, 12 \%\right), 442$ (32), 398 (76), 381 (90), 364 (50), 320 (50), 274 (20), 216 (62), 196 (100), 142 (16), 79 (24) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 498.2675. $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{NO}_{5} \mathrm{Si}$ requires for $\mathrm{M}+\mathrm{H}^{+}$, 498.2676).

(4S)-Ethyl (E)-4-(2-chloro-2-phenylethanamido)-5-(tert-butyl-diphenylsilyloxy)pent-2-enoate 18

To a stirred solution of the protected amine $17(224 \mathrm{mg}, 0.45$ mmol) in dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added trifluoroacetic acid $\left(0.41 \mathrm{~cm}^{3}, 5.40 \mathrm{mmol}\right)$ and the solution was stirred for 0.5 h , before warming to room temp. and stirring for a further 16 h . The solvent was removed in vacuo and the remaining acid removed via its azeotrope with chloroform to afford the crude amine salt as a brown oil $(210 \mathrm{mg}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $7.66-7.58(4 \mathrm{H}, \mathrm{m}$, aromatics $)$, $7.46-7.37(6 \mathrm{H}, \mathrm{m}$, aromatics $)$, $6.80\left(1 \mathrm{H}, \mathrm{dd}, J=16,6.5, \mathrm{CH}=\mathrm{CHCO}_{2}\right), 6.06(1 \mathrm{H}, \mathrm{d}, J=16$, $\mathrm{CH}=\mathrm{CHCO} 2), 4.14\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 4.05(1 \mathrm{H}, \mathrm{m}$, $\mathrm{NHCH}), 3.86-3.78\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}\right), 1.22(3 \mathrm{H}, \mathrm{t}, J=7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right)$. The crude amine was treated with 2-chloro-2-phenylacetyl chloride $\left(0.08 \mathrm{~cm}^{3}, 0.50\right.$ $\mathrm{mmol})$ and triethylamine $\left(0.14 \mathrm{~cm}^{3}, 0.99 \mathrm{mmol}\right)$ in diethyl ether $\left(7 \mathrm{~cm}^{3}\right)$. Column chromatography (petroleum ether-diethyl ether, $1: 1$) afforded the alkene $\mathbf{1 8}(200 \mathrm{mg}, 81 \%$ over two steps) as a colourless oil; $R_{\mathrm{f}} 0.3$ (petroleum ether-diethyl ether, $1: 1$); $[a]_{\mathrm{D}}^{20}-13.6\left(c \quad 0.5, \mathrm{CHCl}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3413(\mathrm{~m}), 3008$ (s), 2958 (s), 2862 (s), 1712 (s), 1678 (s), 1512 (s), 1469 (m), 1307 $(\mathrm{m}), 1277(\mathrm{~m}), 1184(\mathrm{~m}), 1111(\mathrm{~s}), 983(\mathrm{~m}), 702(\mathrm{~s}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.76-7.70(4 \mathrm{H}, \mathrm{m}$, aromatics), $7.60-7.44(11 \mathrm{H}$, m , aromatics), $6.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CHCO}_{2}\right), 6.03$ and $5.98(1 \mathrm{H}$, $2 \times \mathrm{d}, J=16, \mathrm{CH}=\mathrm{CHCO} 2), 5.55$ and $5.53(1 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{PhCH})$, $4.60(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}), 4.17-4.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 3.77-3.04$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OSi}\right), 1.24-1.09\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.97(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 167.2, $165.3(\mathrm{CONH}$, $\left.\mathrm{CO}_{2} \mathrm{Et}\right), 144.2\left(\mathrm{CH}=\mathrm{CHCO}_{2}\right), 136.7(\mathrm{C}=\mathrm{CH}), 135.5(\mathrm{CH}=\mathrm{C})$, $132.3(C=\mathrm{CH}), 130.0,129.1,128.9,128.7,127.7(\mathrm{CH}=\mathrm{C}), 122.7$ $\left(\mathrm{CH}=C \mathrm{HCO}_{2}\right), 64.7\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 61.7(\mathrm{PhCH}), 60.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right)$, $52.0(\mathrm{NHCH}), 26.7\left(\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.2\left(\mathrm{SiCMe}_{3}\right), 14.2\left(\mathrm{CO}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 552\left({ }^{37} \mathrm{M}+\mathrm{H}^{+}, 20 \%\right), 550\left({ }^{35} \mathrm{M}+\mathrm{H}^{+}\right.$, 46), 516 (100), 492 (27), 472 (60), 458 (23), 438 (10), 391 (26), 352 (7), 323 (7), 274 (12), 260 (23) (Found: ${ }^{35} \mathrm{M}+\mathrm{H}^{+}, 550.2181$. $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{ClNO}_{4} \mathrm{Si}$ requires for $\left.{ }^{35} \mathrm{M}+\mathrm{H}^{+}, 550.2180\right)$.

(3R,4S,5S)-1-(tert-Butoxycarbonyl)-3-phenyl-4-(ethoxy-carbonylmethyl)-5-(tert-butyldiphenylsilyloxymethyl)pyrrolidin-2-one 21

To a stirred solution of the lactam $20(220 \mathrm{mg}, 0.43 \mathrm{mmol})$ in dry dichloromethane $\left(5 \mathrm{~cm}^{3}\right)$ under an atmosphere of nitrogen was added triethylamine $\left(0.06 \mathrm{~cm}^{3}, 0.43 \mathrm{mmol}\right)$, di-tert-butyl dicarbonate ($186 \mathrm{mg}, 0.85 \mathrm{mmol}$) and 4-dimethylaminopyridine ($52 \mathrm{mg}, 0.43 \mathrm{mmol}$) and the solution was stirred at room temp. for 24 h . Concentration in vacuo and column chromatography (dichloromethane-ethyl acetate, $49: 1$) afforded 21 (131 mg, $50 \%)$ and the $3 S$ isomer $22(67 \mathrm{mg}, 25 \%)$ as pale yellow oils.

21; $R_{\mathrm{f}} 0.2$ (dichloromethane-ethyl acetate, $49: 1$); $[\alpha]_{\mathrm{D}}^{20}-22.7$ (c $\left.0.38, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3012$ (w), 2931 (w), 1782 (s), 1728 (s), 1473 (w), 1369 (w), 1307 (w), 1153 (m), 1114 (m), 706 $(\mathrm{m}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.73-7.65$ and $7.55-7.32(15 \mathrm{H}$, $2 \times \mathrm{m}$, aromatics), $4.16\left(1 \mathrm{H}\right.$, dd, $\left.J=10,5.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 4.09-$ $3.94\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}, \mathrm{NCH}\right), 3.87\left(1 \mathrm{H}, \mathrm{dd}, J=10.5,2, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}-\right.$

OSi), $3.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9, \mathrm{PhCH}), 3.15\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right)$, $2.67\left(1 \mathrm{H}, \mathrm{dd}, J=15,5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}_{2}\right), 2.56(1 \mathrm{H}, \mathrm{dd}, J=15,7.5$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CO}_{2}\right), 1.55\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.20(3 \mathrm{H}, \mathrm{t}, J=7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.16\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 173.3, $170.9\left(\mathrm{NCO}, \mathrm{CO}_{2} \mathrm{Et}\right), 150.0\left(\mathrm{NCO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 137.4$ ($\mathrm{C=CH}$), $135.5(\mathrm{CH}=\mathrm{C}), 132.9(\mathrm{C}=\mathrm{CH}), 132.7,129.8,128.7,127.8,127.4$ $(\mathrm{CH}=\mathrm{C}), 83.2\left(\mathrm{NCO}_{2} \mathrm{CMe}_{3}\right), 61.9\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 61.5(\mathrm{PhCH}), 60.7$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 54.6(\mathrm{NCH}), 37.6\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 37.2\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right)$, 27.9, $26.8\left(\mathrm{NHCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.3\left(\mathrm{SiCMe}_{3}\right), 13.9$ $\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 616\left(\mathrm{M}+\mathrm{H}^{+}, 18 \%\right)$, 558 (45), 533 (7), 516 (100), 458 (17) (Found: $\mathrm{M}+\mathrm{H}^{+}, 616.3094$. $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{NO}_{6}$ Si requires for $\mathrm{M}+\mathrm{H}^{+}, 616.3094$).
22; $R_{\mathrm{f}} 0.35$ (dichloromethane-ethyl acetate, $49: 1$); $[a]_{\mathrm{D}}^{20}-66.0$ (c 0.30, CHCl_{3}); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3012(\mathrm{w}), 2962(\mathrm{w}), 1781(\mathrm{~s})$, 1728 (s), 1369 (m), 1307 (s), 1111 (s), $705(\mathrm{~m}) ; \delta_{\mathrm{H}}$ (270 MHz , CDCl_{3}) $7.77-7.64$ and $7.52-7.21$ (total $15 \mathrm{H}, 2 \times \mathrm{m}$, aromatics), $4.74(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=10, \mathrm{PhCH}), 4.19-3.95\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CO}_{2} \mathrm{CH}_{2}, \mathrm{NCH}\right.$, $\left.\mathrm{CH}_{2} \mathrm{OSi}\right), 3.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 2.23(1 \mathrm{H}, \mathrm{dd}, J=17,11$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}_{2}\right), 2.03\left(1 \mathrm{H}, \mathrm{dd}, J=17,4.5, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CO}_{2}\right), 1.52(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.20\left(3 \mathrm{H}, \mathrm{t}, J=7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.15(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 174.5,172.3\left(\mathrm{NCO}, \mathrm{CO}_{2} \mathrm{Et}\right)$, $150.6\left(\mathrm{NCO}_{2}{ }^{\mathrm{H}} \mathrm{Bu}\right), 136.0(\mathrm{CH}=C), 134.9(\mathrm{CH}=\mathrm{C}), 133.0(\mathrm{CH}=C)$, 130.4, 129.0, 128.4, $127.9(\mathrm{CH}=\mathrm{C}), 83.6\left(\mathrm{NCO}_{2} \mathrm{CMe}_{3}\right), 65.3$ $\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 62.8(\mathrm{PhCH}), 61.1\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 52.7(\mathrm{NCH}), 37.2$ $\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 36.1\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 28.5,27.3\left(\mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.7\left(\mathrm{SiCMe}_{3}\right), 14.5\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right)$ $616\left(\mathrm{M}+\mathrm{H}^{+}, 12 \%\right), 558(50), 533$ (16), 516 (100), 458 (9), 136 (5), 94 (5) (Found: $\mathrm{M}+\mathrm{H}^{+}, 616.3102 . \mathrm{C}_{36} \mathrm{H}_{45} \mathrm{NO}_{6} \mathrm{Si}$ requires for $\left.\mathrm{M}+\mathrm{H}^{+}, 616.3094\right)$.

(2S,3S,4S)-1-(tert-Butoxycarbonyl)-2-(hydroxymethyl)-3-(ethoxycarbonylmethyl)-4-phenylpyrrolidine 23

To a solution of lactam $\mathbf{2 2}(90 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry THF (3 cm^{3}) at reflux under an atmosphere of nitrogen was added borane-dimethyl sulfide complex $\left(0.22 \mathrm{~cm}^{3}, 0.44 \mathrm{mmol}, 2 \mathrm{M}\right.$ in THF) and the reaction mixture stirred at reflux for 18 h . Diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and saturated ammonium chloride $\left(10 \mathrm{~cm}^{3}\right)$ were added and the organic layer was separated, before further extraction of the aqueous layer with diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with $5 \% \mathrm{HCl}, 5 \%$ aqueous sodium bicarbonate and brine, dried (magnesium sulfate) to give crude material. Purification by column chromatography (petroleum ether-ethyl acetate, $9: 1$) afforded the protected pyrrolidine ($44 \mathrm{mg}, 49 \%$) as a colourless oil; $R_{\mathrm{f}} 0.3$ (petroleum ether-ethyl acetate, 9:1); $v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3012$ (w), 2931 (w), 1728 (s), 1685 (s), 1403 (s), 758 (m), 733 (m), 706 $(\mathrm{m}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right) 7.78-7.65(4 \mathrm{H}, \mathrm{m}$, aromatics), $7.22-6.92(11 \mathrm{H}, \mathrm{m}$, aromatics $), 4.22(1 \mathrm{H}, \mathrm{dd}, J=10,3$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.91\left(2 \mathrm{H}, \mathrm{q}, J=7, \mathrm{CO}_{2} \mathrm{CH}_{2}\right), 3.99-3.62(5 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCH}_{2}, \mathrm{PhCH}, \mathrm{NCH}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OSi}\right), 3.16\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right)$, $2.18\left(1 \mathrm{H}, \mathrm{dd}, J=16,7, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}_{2}\right), 1.94(1 \mathrm{H}, \mathrm{dd}, J=16,5$, $\left.\mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CO}_{2}\right), 1.34\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.20(3 \mathrm{H}, \mathrm{t}, J=7$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.10\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $172.5\left(\mathrm{CO}_{2} \mathrm{Et}\right), 154.5\left(\mathrm{NCO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 139.5 \quad(\mathrm{CH}=\mathrm{C}), 138.8$ $(C=\mathrm{CH}), 134.8(\mathrm{CH}=\mathrm{C}), 133.5(\mathrm{C}=\mathrm{CH}), 129.7,128.8,128.6$, 128.2, 127.9, 127.7, 127.2, $126.8(\mathrm{CH}=\mathrm{C})$, $79.4\left(\mathrm{NCO}_{2} \mathrm{CMe}_{3}\right)$, $66.4\left(\mathrm{CH}_{2} \mathrm{OSi}\right), 63.3(\mathrm{PhCH}), 60.4\left(\mathrm{CO}_{2} \mathrm{CH}_{2}\right), 50.7,49.2$ $\left(\mathrm{NCH}_{2}\right), 44.8,43.7(\mathrm{NCH}), 42.4,41.2\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 34.2$ $\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), \quad 28.5, \quad 26.9 \quad\left(\mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \quad \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), \quad 19.2$ $\left(\mathrm{SiCMe}_{3}\right), 14.1\left(\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 602\left(\mathrm{M}+\mathrm{H}^{+}\right.$, 100%), 572 (10), 546 (42), 502 (89) (Found: M + H ${ }^{+}, 602.3296$. $\mathrm{C}_{36} \mathrm{H}_{47} \mathrm{NO}_{5}$ Si requires for $\mathrm{M}+\mathrm{H}^{+}, 602.3302$).

A stirred solution of the pyrrolidine ($17 \mathrm{mg}, 0.028 \mathrm{mmol}$) in THF $\left(2 \mathrm{~cm}^{3}\right)$ at room temp. was treated dropwise with tetrabutylammonium fluoride $\left(0.04 \mathrm{~cm}^{3}, 0.042 \mathrm{mmol}, 1 \mathrm{M}\right.$ in THF) and stirred for 18 h . The mixture was then poured into saturated aqueous ammonium chloride and extracted three times with dichloromethane. The combined organic extracts were dried (magnesium sulfate) and concentrated in vacuo to
afford crude product, which was purified by column chromatography (petroleum ether-ethyl acetate, $3: 2$) to give the alcohol $23(10 \mathrm{mg}, 50 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.3$ (petroleum ether-ethyl acetate, $3: 2$); $\delta_{\mathrm{H}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.41-7.22(5 \mathrm{H}$, m , aromatics), 4.09 (2 H , app. $\mathrm{t}, J=7, \mathrm{CO}_{2} \mathrm{CH}_{2}$), 3.82-3.72 and 3.62-3.58 ($\left.6 \mathrm{H}, 2 \times \mathrm{m}, \mathrm{NCH}_{2}, \mathrm{NCH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{PhCH}\right), 2.62$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 2.20\left(1 \mathrm{H}, \mathrm{dd}, J=16.5,6.5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}_{2}\right)$, $1.94\left(1 \mathrm{H}, \mathrm{dd}, J=16.5,7.5 \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CO}_{2}\right), 1.51\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2}-\right.$ $\left.\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right), 1.22\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=7, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH} H_{3}\right) ; m / z\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 391$ (11\%), $364\left(\mathrm{M}+\mathrm{H}^{+}, 13\right), 308(100), 290(17), 264$ (65), 246 (21), 232 (90), 218 (27) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 364.2130. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NO}_{5}$ requires for $\left.\mathrm{M}+\mathrm{H}^{+}, 364.2124\right)$.
(2S,3S,4R)-1-(tert-Butoxycarbonyl)-2-(tert-butyldiphenyl-
silyloxymethyl)-3-(2-hydroxyethyl)-4-phenylpyrrolidine 24
To a stirred solution of lactam $21(167 \mathrm{mg}, 0.27 \mathrm{mmol})$ in dry THF ($3 \mathrm{~cm}^{3}$) at reflux (under an atmosphere of nitrogen) was added borane-dimethyl sulfide complex ($0.82 \mathrm{~cm}^{3}, 1.62 \mathrm{mmol}$, 2 M in THF) and the reaction mixture stirred at reflux for 24 h . Diethyl ether $\left(10 \mathrm{~cm}^{3}\right)$ and saturated ammonium chloride (10 cm^{3}) were added and the organic layer separated, before further extraction of the aqueous layer with diethyl ether $\left(20 \mathrm{~cm}^{3}\right)$. The combined organic extracts were washed with 5% aqueous HCl , 5% aqueous NaHCO_{3} and brine, dried (magnesium sulfate) and concentrated in vacuo to give crude product, which was purified by column chromatography (petroleum ether-ethyl acetate, $9: 1$) to give the pyrrolidine $\mathbf{2 4}(103 \mathrm{mg}, 75 \%)$ as a colourless oil; $R_{\mathrm{f}} 0.45$ (petroleum ether-ethyl acetate, $1: 1$); $[a]_{\mathrm{D}}^{20}-18.5$ (c 0.29 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3614$ (w), 2931 (w), 1681 (s), 1411 (m), 1169 (w), $760(\mathrm{~s}), 709(\mathrm{~m}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz}\right.$, toluene- $\left.d_{8}\right)$ 7.72$7.63(4 \mathrm{H}, \mathrm{m}$, aromatics), $7.20-6.78(11 \mathrm{H}, \mathrm{m}$, aromatics $), 4.33$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 4.00(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}), 3.76(1 \mathrm{H}$, app. d, $J=8$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}\right), 3.30(1 \mathrm{H}$, app. t, $J=8$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.10\left(2 \mathrm{H}\right.$, app. td, $\left.J=5,1, \mathrm{C} H_{2} \mathrm{OSi}\right), 2.80(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{N} H_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 2.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 1.44-1.35(11 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}(67.5$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (mixture of conformers) $153.8\left(\mathrm{NCO}_{2}{ }^{\mathrm{t}} \mathrm{Bu}\right), 140.4$ $(C=\mathrm{CH}), 135.6(\mathrm{CH}=\mathrm{C}), 133.2$ ($C=\mathrm{CH}$), 129.8, 129.6, 129.4, 128.7, 128.5, 128.4, 127.8, $127.0(\mathrm{CH}=\mathrm{C}), 79.5,79.2\left(\mathrm{NCO}_{2}{ }^{-}\right.$ $\left.\mathrm{CMe}_{3}\right), 64.0(\mathrm{PhCH}), 64.2,62.6\left(\mathrm{CH}_{2} \mathrm{OH}\right), 61.2,61.0\left(\mathrm{CH}_{2} \mathrm{OSi}\right)$, 55.2, $54.0\left(\mathrm{NCH}_{2}\right), 51.0,50.8(\mathrm{NCH}), 45.1,43.3\left(\mathrm{CHCH}_{2}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 36.5,36.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 28.5,28.4,26.9,26.8$ $\left(\mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{3}\right), 19.4,19.3\left(\mathrm{SiCMe}_{3}\right) ; m / z(\mathrm{CI}$, $\left.\mathrm{NH}_{3}\right) 560\left(\mathrm{M}+\mathrm{H}^{+}, 32 \%\right), 504$ (19), 460 (100), 446 (23), 391 (17), 190 (37) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 560.3193. $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{Si}$ requires for $\left.\mathrm{M}+\mathrm{H}^{+}, 560.3196\right)$.

Phenylallokainic acid 25

A solution of $\mathbf{2 4}(95 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF ($3 \mathrm{~cm}^{3}$) at room temp. was treated dropwise with tetrabutylammonium fluoride ($0.51 \mathrm{~cm}^{3}, 0.51 \mathrm{mmol}, 1 \mathrm{M}$ in THF) and stirred for 18 h . The solvent was removed in vacuo and column chromatography (ethyl acetate-petroleum ether, 2:1) afforded the diol (49 mg , 90%) as a colourless oil; $R_{\mathrm{f}} 0.2$ (ethyl acetate-petroleum ether, 2:1); $[a]_{\mathrm{D}}^{20}-17.0\left(c 0.08, \mathrm{CHCl}_{3}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 3610(\mathrm{~m})$, $2981(\mathrm{~m}), 1666(\mathrm{~m}), 1412(\mathrm{~s}), 1164(\mathrm{~m}), 756(\mathrm{~s}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz} ;$ CDCl_{3}) (mixture of conformers) $7.28-7.14(5 \mathrm{H}, \mathrm{m}$, aromatics), $5.08(1 \mathrm{H}, \mathrm{br}$ s, OH$), 3.91-3.64$ and $3.41-3.13(8 \mathrm{H}, 2 \times \mathrm{m}$, $\mathrm{PhCH}, \mathrm{NCH}_{2}, \mathrm{NCH}, \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CHCH}_{2} \mathrm{OH}$), 2.84 (1 H, app. q, $\left.J=10, \mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 2.06(1 \mathrm{H}$, br s, OH$), 1.66(2 \mathrm{H}$, app. q, $\left.J=6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 1.39\left(9 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}(67.5 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 156.2\left(\mathrm{NCO}_{2}{ }^{\mathrm{H}} \mathrm{Bu}\right), 139.5(\mathrm{C}=\mathrm{CH}), 128.8,127.7,127.3$ $(\mathrm{CH}=\mathrm{C}), 80.5\left(\mathrm{NCO}_{2} \mathrm{CMe}_{3}\right), 66.6\left(\mathrm{CHCH}_{2} \mathrm{OH}\right), 65.9(\mathrm{PhCH})$, $60.3\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 54.4\left(\mathrm{NCH}_{2}\right), 50.3\left(\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 45.0$ $\left(\mathrm{CHCH}_{2} \mathrm{OH}\right), 35.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 28.4\left(\mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \mathrm{m} / \mathrm{z}$ (CI, $\left.\mathrm{NH}_{3}\right) 322\left(\mathrm{M}+\mathrm{H}^{+}, 100 \%\right), 283$ (8), 266 (76), 222 (28), 191 (40) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 322.2018. $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4}$ requires for $\mathrm{M}+\mathrm{H}^{+}, 322.2018$).

To a solution of the diol $(25 \mathrm{mg}, 0.08 \mathrm{mmol})$ in a mixture of
carbon tetrachloride ($250 \mu \mathrm{l}$), acetonitrile ($250 \mu \mathrm{l}$) and water ($400 \mu \mathrm{l}$) was added sodium periodate ($100 \mathrm{mg}, 0.47 \mathrm{mmol}$) and ruthenium trichloride monohydrate (catalytic amount) and the reaction stirred for 24 h . The aqueous phase was separated and extracted with dichloromethane $(\times 3)$, ethyl acetate $(\times 3)$ and acidified to pH 3 using 3 M aqueous HCl before re-extraction using ethyl acetate. The combined organic extracts were dried (magnesium sulfate) and concentrated in vacuo to give the crude acid as an oil; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 8.00\left(2 \mathrm{H}\right.$, br s, $\left.2 \times \mathrm{CO}_{2} \mathrm{H}\right)$, 7.39-7.22 ($5 \mathrm{H}, \mathrm{m}$, aromatics), 4.05-3.85 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CHCO} \mathrm{C}_{2} \mathrm{H}$, $\left.\mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.10-2.92(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}$, $\left.\mathrm{CHCH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 2.54-2.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 1.25(9 \mathrm{H}, \mathrm{s}$ $\left.\mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right)$.
The crude acid was dissolved in diethyl ether $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ and treated with a solution of diazomethane in diethyl ether (generated from Diazald ${ }^{\circledR}$). After 1 h , glacial ethanoic acid was added to quench the excess diazomethane and concentration gave crude product, purified by column chromatography (dichloromethane-ethyl acetate, $10: 1$) to give the diester as a colourless oil ($13 \mathrm{mg}, 44 \%$ from the diol); $R_{\mathrm{f}} 0.6$ (dichloro-methane-ethyl acetate, $10: 1$); $[a]_{\mathrm{D}}^{20}-22.6\left(c 0.1, \mathrm{CHCl}_{3}\right) ; v_{\max } /$ $\mathrm{cm}^{-1}\left(\mathrm{CHCl}_{3}\right) 2979$ (m), 1739 (s), 1691 (s), 1407 (w), 1367 (w), 1232 (w), 1167 (s), 775 (s), 748 (s); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) (mixture of conformers) $7.39-7.23(5 \mathrm{H}, \mathrm{m}$, aromatics $), 4.07(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCO}_{2}\right), 3.95\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.78$ and $3.76(3 \mathrm{H}, 2 \times \mathrm{s}$, $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.52\left(1 \mathrm{H}\right.$, app. $\left.\mathrm{t}, J=12, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.45$ and 3.42 $\left(3 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.05(1 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}), 2.71(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 2.45\left(2 \mathrm{H}\right.$, app. d, $\left.J=10, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 1.46$ and 1.42 $\left(9 \mathrm{H}, 2 \times \mathrm{s}, \mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \delta_{\mathrm{C}}\left(67.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 172.8,172.6$ $\left(2 \times \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 153.2\left(\mathrm{NCO}_{2}{ }^{ } \mathrm{Bu}\right), 137.5,137.4(\mathrm{C}=\mathrm{CH}), 128.8$, 128.0, $127.7(\mathrm{CH}=\mathrm{C}), 80.4,80.3\left(\mathrm{NCO}_{2} \mathrm{CMe}_{3}\right), 64.6,64.2$ $\left(\mathrm{NCHCO}_{2} \mathrm{Me}\right), 53.7,53.0\left(\mathrm{NCH}_{2}\right), 52.3,52.1,51.6(2 \times$ $\left.\mathrm{CO}_{2} \mathrm{CH}_{3}\right), 50.1,49.3,47.5,46.8\left(\mathrm{PhCH}, \mathrm{CHCH}_{2} \mathrm{CO}_{2}\right), 35.6$, $35.3\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right), 28.4,28.3\left(\mathrm{NCO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right) ; \mathrm{m} / \mathrm{z}\left(\mathrm{CI}, \mathrm{NH}_{3}\right) 378$ ($\mathrm{M}+\mathrm{H}^{+}, 9 \%$), 322 (25), 278 (100), 218 (20) (Found: $\mathrm{M}+\mathrm{H}^{+}$, 378.1912. $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NO}_{6}$ requires for $\mathrm{M}+\mathrm{H}^{+}, 378.1917$).

A solution of the diester $(10 \mathrm{mg}, 0.026 \mathrm{mmol})$ in $6 \mathrm{M} \mathrm{HCl}(5$ cm^{3}) containing anisole (catalytic amount) was heated at $70^{\circ} \mathrm{C}$ for 5 h . Water $\left(5 \mathrm{~cm}^{3}\right)$ was added and the aqueous solution was washed with ethyl acetate $(\times 3)$. The aqueous phase was then concentrated and the product was triturated with diethyl ether to give the hydrochloride salt $\mathbf{2 5}(7 \mathrm{mg}, 93 \%)$ as an off-white
gum; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 7.44-7.30(5 \mathrm{H}, \mathrm{m}$, aromatics), 4.52 $\left(1 \mathrm{H}, \mathrm{d}, J=10, \mathrm{CHCO}_{2}\right), 3.75\left(1 \mathrm{H}\right.$, app. t, $\left.J=6, \mathrm{NCH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}}\right), 3.56$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}_{\mathrm{A}} H_{\mathrm{B}}\right), 3.47(1 \mathrm{H}$, app. d, $J=10, \mathrm{PhCH}), 2.83(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CHCH} \mathrm{CO}_{2}\right), 2.66\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=17,5, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{CO}_{2}\right), 2.57$ $\left(1 \mathrm{H}, \mathrm{dd}, J=17,6, \mathrm{CH}_{\mathrm{A}} H_{\mathrm{B}} \mathrm{CO}_{2}\right) ; \delta_{\mathrm{C}}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) 172.9$ $\left(\mathrm{CO}_{2}\right), 170.4\left(\mathrm{CO}_{2}\right), 137.3(\mathrm{C}=\mathrm{CH}), 130.3,129.4,129.1(\mathrm{CH}=\mathrm{C})$, $64.0\left(\mathrm{CHCO}_{2}\right), 52.1,50.6\left(\mathrm{PhCH}, \mathrm{NCH}_{2}\right), 47.3\left(\mathrm{CHCH}_{2} \mathrm{CO}_{2}\right)$, $34.9\left(\mathrm{CH}_{2} \mathrm{CO}_{2}\right) ; m / z(\mathrm{FAB}) 284\left(\mathrm{M}+2 \mathrm{NH}_{3}{ }^{+}, 22 \%\right), 267$ $\left(\mathrm{M}+\mathrm{NH}_{3}{ }^{+}, 100\right), 253$ (6), 221 (67), 158 (20), 140 (22), 118 (15), 104 (12), 91 (20).

Acknowledgements

We thank Parke-Davis Neuroscience and The University of York for a research studentship (to J. M. L.). We would also like to thank Dr T. A. Dransfield, Miss H. Fish and Mrs B. Chamberlain for expert assistance with MS and NMR studies.

References

1 A. F. Parsons, Tetrahedron, 1996, 52, 4149.
2 (a) J. E. Baldwin, A. M. Fryer, M. R. Spyvee, R. C. Whitehead and M. E. Wood, Tetrahedron, 1997, 53, 5273; (b) J. E. Baldwin, S. J. Bamford, A. M. Fryer, M. P. Rudolf and M. E. Wood, Tetrahedron, 1997, 53, 5255.
3 J. S. Bryans, J. M. Large and A. F. Parsons, preceding paper.
4 (a) A. F. Parsons and R. J. K. Taylor, J. Chem. Soc., Chem. Commun., 1993, 1224; (b) A. F. Parsons and R. J. K. Taylor, J. Chem. Soc., Perkin Trans. 1, 1994, 1945.

5 A. L. J. Beckwith and T. Lawrence, J. Chem. Soc., Perkin Trans. 2, 1979, 1535.
6 D. P. Curran and W. Shen, J. Am. Chem. Soc., 1993, 115, 6051.
7 C. Walling and A. Cioffari, J. Am. Chem. Soc., 1972, 94, 6064.
8 A. L. J. Beckwith and G. Moad, J. Chem. Soc., Perkin Trans. 2, 1980, 1083
9 (a) J. Ezquerra, C. Pedregal, A. Rubio, B. Yruretagoyena, A. Escribano and F. Sánchez-Ferrando, Tetrahedron, 1993, 49, 8665; (b) J. Ezquerra, C. Pedregal, B. Yruretagoyena, A. Rubio, M. C. Carreño, A. Escribano and J. L. García Ruano, J. Org. Chem., 1995, 60, 2925.
10 K. C. Nicolaou, K. Koide and M. E. Bunnage, Chem. Eur. J., 1995, 1, 454.

